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1. TOPIC for THIS LECTURE

Einstein’s constraint equations “prescribed curvature problem”

§ manifold pM, g , kq with finitely many asymptotic ends

§ unknowns: Riemannian metric g and symmetric p0, 2q-tensor field k

extrinsic curvature in the dynamical picture

§ matter content: scalar field H‹ : M Ñ R` vector field M‹

§ Einstein’s Hamiltonian and momentum constraints

Rg ` pTrgkq2 ´ |k|2g “ H‹ Divg
`
k ´ pTrgkqg˘ “ M‹

Notation

It is convenient to introduce the p2, 0q-tensor h by h :“ `
k ´ Trg pkqg˘77

Hpg , hq :“ Rg ` 1
2

`
Trgh

˘
2 ´ |h|2g Mpg , hq :“ Divgh

Gpg , hq :“ `
H,M

˘pg , hq “ pH‹,M‹q
In the dynamical picture, Gpg , hq is a spacetime vector.



Vast and rich literature

§ Conformal method Lichnerowicz (1960s), Choquet-Bruhat, Chrusciel, Corvino, Delay,

Dilts, Galloway, Gicquaud, Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, Schoen, etc.

§ Variational method Corvino, Corvino-Schoen, Chrusciel-Delay, Carlotto-Schoen, etc.

Major achievements

§ existence of initial data, explicit constructions, physically relevant solutions

§ general relativity, Riemannian geometry

§ numerous classes of solutions: compact, various types of asymptotic ends

§ including gluing techniques, combine two di↵erent solutions together

§ A. Carlotto, The general relativistic constraint equations, Living Reviews
in Relativity (2021).

§ Very active subject: Lee, Lesourd, Corvino, Pasqualotto, etc.



Shielding gravity: localization at infinity

§ asymptotically Euclidean initial data sets

§ phenomena of anti-gravity (or shielding) Carlotto and Schoen

Chruściel and Delay

§ solutions that are localized at infinity

§ The Positive Mass Theorem implies restrictions on gluing at infinity.

§ identically Euclidian near infinity except in a cone with possibly
arbitrary small angle

§ Other recent developments
§ S. Aretakis, S. Czimek, I. Rodnianski: characteristic gluing problem

§ Y.-C. Mao and Z.-K. Tao: localization “a la Carlotto-Schoen” in narrow domains

Localization with (super-)harmonic control

§ Carlotto and Schoen

§ solutions with sub-harmonic control r
p with p P `

n´2

2
, n ´ 2

˘

§ conjecture: gluing should be possible at harmonic level

§ Localization results with harmonic and super-harmonic control

§ PLF & The-Cang Nguyen, 2020: The seed-to-solution method for

the Einstein constraint equations

§ Bruno Le Floch & PLF, 2023



Figure: Gluing of the Euclidean metric and the Schwarzschild metric.
Left: exact localization with sub-harmonic control

Middle: asymptotic localization with harmonic control

Right: exact localization with harmonic control



2. EXACT vs. ASYMPTOTIC LOCALIZATION PROBLEMS

Theorem. The seed-to-solution method (PLF–Nguyen)

Given any seed data set pM, g1, h1q on a 3-manifold (with a single end, say):
a Riemannian metric g1 and a symmetric two-tensor h1
satisfying (suitable smallness conditions and) 1{2 † pG § minp1, pMq

1{2 † pM † `8
g1 “ gEucl ` Opr´pG q h1 “ Opr´pG ´1q

Hpg1, h1q “ Opr´pM´2q Mpg1, h1q “ Opr´pM´2q
there exists a solution pg , hq to the vacuum Einstein equations Gpg , hq “ 0.

§ Sub-harmonic decay: pM † 1

g “ g1 ` Opr´pM q h “ h1 ` Opr´pM´1q
§ Harmonic decay: pM “ 1 Hpg1, h1q and Mpg1, h1q in L

1pMq
g “ g1 ` rm

r ` opr´1q h “ h1 ` Opr´2q
§ Super-harmonic decay: pM ° 1 p “ minppG ` 1, pM , 2q

g “ g1 ` rm
r ` Opr´pq h “ h1 ` Opr´2q

Mass modulator rm “ rmpg1, h1q “ const.
≥
M Hpg1, h1q dVg1 ` OpGpg1, h1q2q



Exact localization problem Carlotto and Schoen

– Vacuum constraint Einstein equations

Decompose asymptotic infinity into three angular regions

§ Ca: cone with (possibly arbitrarily small) angle a P p0, 2⇡q
§ C c

a`": complement of the same cone with (slightly) larger angle a ` "

§ T "
a : remaining transition region

Ca and C c
a`": the metric coincides with Euclidean/Schwarzschild ones

solve the vacuum Einstein equations in the transition region Ta,"

– Sub-harmonic control in Ta,", that is, r
´p

with p P p1{2, 1q

– Question raised by Carlotto and Schoen

construct solutions (with prescribed asymptotic)
enjoying the 1{r harmonic decay in all angular directions

1{rp region

1{rp region

Euclidean

Schwarzschild



Asymptotic localization problem

slightly relax the localization condition

– asymptotic at a super-harmonic rate to prescribed metrics

– physically as natural as the exact localization problem
1{r region

1{r region

asympt. Eucl.

asympt. Schwarzschild

Theorem. The asymptotic localization problem (PLF–Nguyen)

– Vacuum Einstein equations on a manifold M with a single asymptotic end

– Decompose asymptotic infinity into three asymptotic angular regions

Ca Y C c
a`" Y Ta," Ä R3

By considering (for instance) the Euclidean metric gEucl and the Schwarzschild
metric gSch “ p1 ` 2mSch{rq gEucl (with mass mSch ° 0),
there exists a solution to the vacuum Einstein equations Gpg , hq “ 0:

g “ gEucl ` Opr´qq in C c
a`"

g “ gSch ` Opr´qq in Ca q P p1, 2q
g “ gEucl ` Opr´1q in Ta,"



3. A PARAMETRIZATION of INITIAL DATA SETS

Definition

A localized reference set pM, g0, h0,!q consists of
– Riemannian manifold pM, g0q
– symmetric p2, 0q-tensor h0 on M
– localization weight ! P r0,`8s

§ a smooth open set ⌦ Ä M, referred to as the gluing domain

!

$
’’’&

’’’%

° 0 in the gluing domain ⌦

Ñ 0 when approaching B⌦ from ⌦

Ñ 0 at asymptotic ends

“ `8 in A⌦

§ ! :“ b
r P r0,`8s

§ asymptotic radius r : M Ñ r1,`8q r » `
1 ` pdg0p¨, y0qq2˘

1{2

for some (fixed) point y0 P M
§ boundary distance b : M Ñ p0, 1s large integer N • 1

b

#
» min

`
1,

`
dB⌦{r˘N

¯
in the gluing domain ⌦

“ `8 in the fixed domain A⌦



§ Weighted Hölder spaces C
l,↵
p pM, g0,!q with

}f }l,↵g0,!,p “ ∞
|L|§l supM

´
b!p`|L||rL

f |g0
¯

` ∞
|L|“l supM

´
b!p`|L|`↵ JrL

f Kg0,↵
¯

§ Weighted Lebesgue spaces (and Sobolev spaces, etc.):

}f }2L2ppM,g0,!q :“
≥
M |f |2g0 b!2p´n

dVg0

§ Weighted Lebesgue-Hölder spaces L
2
C

l,↵
! pM, g0q with

`~f ~l,↵
g0,!,p

˘
2
:“ `}f }L2ppM,g0,!q

˘
2 ` `}f }

Cl,↵
p pM,g0,!q

˘
2



Definition

Consider a localized reference set pM, g0, h0,!q and some parameters "G , "M ° 0.
Consider decay and accuracy exponents ppG , qG q and ppM , qMq

ppM , qMq • ppG , qG q
A ppG , qG , pM , qMq-localized seed data set pg1, h1,H‹,M‹q consists of:

§ Near-reference data

g1 is a Riemannian metric

h1 is a symmetric p2, 0q-tensor
}g1 ´ g0}N,↵

g0,!,pG § "G }h1 ´ h0}N´1,↵
g0,!,qG § "G

§ Near-Einsteinian data

H‹ is a scalar field and M‹ is a vector field and
⌫⌫Hpg1, h1q ´ H‹

⌫⌫N´4,↵

g0,!,pM`2
§ "M

⌫⌫Mpg1, h1q ´ M‹
⌫⌫N´3,↵

g0,!,qM`1
§ "M

§ metrics with possibly slow decay
§ treat, together, the Einstein operator on pg1, h1q and the matter content

We seek to make a “projection” of each pg1, h1q on the “solution manifold”.



Variational framework Corvino and Schoen

Given pf ,V q consider the functional
ª

M

´1
2

ˇ̌
dH˚

pg1,h1qru,Z s
ˇ̌
2
b!2p´n ` 1

2

ˇ̌
dM˚

pg1,h1qru,Z s
ˇ̌
2
b!2q´n ´ f u ´ g1pV ,Zq

¯
dVg1

Euler-Lagrange equation

pu,Zq minimizer: fourth-order PDEs

g ´ g1 “ b!2p´n
dH˚

pg1,h1qru,Z s
h ´ h1 “ b!2q´n

dM˚
pg1,h1qru,Z s

pf ,V q “ dGpg1,h1qqrg ´ g1, h ´ h1s

Fixed-point’s Picard scheme

§ quadratic part of the Einstein operator decay properties of nonlinearities

Qpg1,h1qrg2, h2s :“ Gpg , hq ´ Gpg1, h1q ´ dGpg1,h1qrg2, h2s

§ study sequences pfi ,Vi q and pgi , hi q
pfi ,Vi q :“ ´Qpg1,h1qrgi´1, hi´1s ` pH‹,M‹q ´ Gpg1, h1q
pgi , hi q :“ pdGq´1

pg1,h1qpfi ,Vi q



Operator dGpg0,h0q ˝ (weights) ˝ dG˚
pg0,h0q

with wp “ b!2p´n and wq “ b!2q´n

dH
“
wp dH˚rus‰ “ pn ´ 1q�pwp �uq ` prirj

wp ´ wp R
ijqprirju ´ Rijuq

´ p�wp ´ 2wp Rq�u

`
´
2R riwp ` 3

2
wp riR

¯
ri

u ` 1
2

´
�pwp Rq ` p�wpqR

¯
u

dM
“
wq dM˚rZ s‰i “ ´1

2
wq prjrj

Z
i ` rjri

Z
jq ´ 1

2
rjwq prj

Z
i ` ri

Z
jq

In the vicinity of an asymptotically Euclidian end: eij “ �ij

Ae,wp rus :“ pn ´ 1q�epwp �euq ` pBiBjwp qBiBju ´ p�ewpq�eu

Be,wq rZ si :“ ´1
2
wq p�eZ

i ` BjBiZ
jq ´ 1

2
pBjwqqpBjZ

i ` BiZ
jq



Solution mapping

order of regularity N • 4 and Hölder exponent ↵ P p0, 1s
Definition

§ a localized reference set pM, g0, h0,!q and parameters "G , "M ° 0

§ pairs ppG , qG q and ppM , qMq with ppM , qMq • ppG , qG q
§ pair of exponents pp, qq

To any ppG , qG , pM , qMq-localized seed data set pg1, h1,H‹,M‹q,
the pp, qq-localized seed-to-solution map
associates a scalar-valued field u and a vector-valued field Z :

g “ g1 ` b!2p´n
dH˚

pg1,h1qpu,Zq h “ h1 ` b!2q´n
dM˚

pg1,h1qpu,Zq
obey the Einstein constraints Gpg , hq “ pH‹,M‹q Lebesgue-Hölder norm

⌫⌫g ´ g1

⌫⌫N,↵

g0,!,p
§ "G

⌫⌫h ´ h1

⌫⌫N´1,↵

g0,!,q
§ "G

}u}N,↵
g0,!,p À

⌫⌫Hpg1, h1q ´ H‹
⌫⌫N´4,↵

g0,!,p`2
`"G

⌫⌫Mpg1, h1q ´ M‹
⌫⌫N´3,↵

g0,g0,!,q`1

}Z}N´1,↵
g0,!,q À "G

⌫⌫Hpg1, h1q ´ H‹
⌫⌫N´4,↵

g0,!,p`2
`

⌫⌫Mpg1, h1q ´ M‹
⌫⌫N´3,↵

g0,!,q`1



Our parametrization

Definition

Equivalence relation is defined between two pairs of tensors pg1, h1q and pg , hq

g “ g1 ` b!2p´n
dH˚

pg0,h0qpu,Zq, h “ h1 ` b!2q´n
dM˚

pg0,h0qpu,Zq

for some scalar field u and vector field Z pg , hq „p!,p,qq pg1, h1q.

Definition

For any given matter data H‹,M‹ (possibly vacuum data)
the corresponding solution map S!,p,q

sending a (seed data) element pg1, h1q to one of its representative (exact solution)
in the same class rpg1, h1qs, namely

S!,p,q : pg1, h1q P E"G ,"M

`
pG , qG ; pM , qM

˘ fiÑ pg , hq P rpg1, h1qs

is referred to as the localized seed-to-solution parametrization for Einstein’s
constraint equations in the vicinity of the localized reference set pM, g0, h0,!q.

§ make a specific choice of reference g0, h0
§ establish weighted Poincaré and weighted Korn inequalities
§ conditions required: geometry of the gluing domain, decay/accuracy
exponents



Coercivity and elliptic regularity

§ linearization dGpg1,h1q of the Einstein operator G around pg1, h1q
§ not elliptic unless a gauge choice is made

§ restrict the deformation pu,Zq to lie in the image of the dual operator
dG˚

pg1,h1q, up to weights that suitably localize the deformation of interest

§ invertibility of the fourth-order operator dGpg1,h1q ˝ (weights) ˝ dG˚
pg1,h1q

§ weighted Hölder-Sobolev spaces

§ weighted Poincaré inequality, weighted Korn inequality

§ elliptic system in the sense of Douglis-Nirenberg, Hölder interior regularity
estimates


