An introduction to Einstein constraints and the seed-to-solution method

Philippe G. LeFloch
Sorbonne Université
Laboratoire Jacques-Louis Lions
Centre National de la Recherche Scientifique
Blog: philippelefloch.org

Outline of this talk

1. Topic for this lecture
2. Exact vs. asymptotic localization problems
3. A parametrization of localized initial data sets
4. Localization in cone-like domains
5. Main statement with super-harmonic control
6. Concluding remarks

Main collaborators
The-Cang Nguyen (Montpellier) Bruno Le Floch (Paris)

1. TOPIC for THIS LECTURE

Einstein's constraint equations
"prescribed curvature problem"

- manifold (M, g, k) with finitely many asymptotic ends
- unknowns: Riemannian metric g and symmetric (0,2)-tensor field k
extrinsic curvature in the dynamical picture
- matter content: scalar field $H_{\star}: \mathbf{M} \rightarrow \mathbb{R}_{+}$vector field M_{\star}
- Einstein's Hamiltonian and momentum constraints

$$
R_{g}+\left(\operatorname{Tr}_{g} k\right)^{2}-|k|_{g}^{2}=H_{\star} \quad \operatorname{Div}_{g}\left(k-\left(\operatorname{Tr}_{g} k\right) g\right)=M_{\star}
$$

Notation

It is convenient to introduce the $(2,0)$-tensor h by $h:=\left(k-\operatorname{Tr}_{g}(k) g\right)^{\text {\#\# }}$

$$
\begin{aligned}
\mathcal{H}(g, h) & :=R_{g}+\frac{1}{2}\left(\operatorname{Tr}_{g} h\right)^{2}-|h|_{g}^{2} \\
\mathcal{G}(g, h) & :=(\mathcal{H}, \mathcal{M})(g, h)=\left(H_{\star}, M_{\star}\right)
\end{aligned} \quad \mathcal{M}(g, h):=\operatorname{Div}_{g} h
$$

In the dynamical picture, $\mathcal{G}(g, h)$ is a spacetime vector.

Vast and rich literature

- Conformal method Lichnerowicz (1960s), Choquet-Bruhat, Chrusciel, Corvino, Delay, Dilts, Galloway, Gicquaud, Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, Schoen, etc.
- Variational method Corvino, Corvino-Schoen, Chrusciel-Delay, Carlotto-Schoen, etc.

Major achievements

- existence of initial data, explicit constructions, physically relevant solutions
- general relativity, Riemannian geometry
- numerous classes of solutions: compact, various types of asymptotic ends
- including gluing techniques, combine two different solutions together
- A. Carlotto, The general relativistic constraint equations, Living Reviews in Relativity (2021).
- Very active subject: Lee, Lesourd, Corvino, Pasqualotto, etc.

Shielding gravity: localization at infinity

- asymptotically Euclidean initial data sets
- phenomena of anti-gravity (or shielding)

Carlotto and Schoen Chruściel and Delay

- solutions that are localized at infinity
- The Positive Mass Theorem implies restrictions on gluing at infinity.
- identically Euclidian near infinity except in a cone with possibly arbitrary small angle
- Other recent developments
- S. Aretakis, S. Czimek, I. Rodnianski: characteristic gluing problem
- Y.-C. Mao and Z.-K. Tao: localization "a la Carlotto-Schoen" in narrow domains

Localization with (super-)harmonic control

- Carlotto and Schoen
- solutions with sub-harmonic control $\quad r^{p}$ with $p \in\left(\frac{n-2}{2}, n-2\right)$
- conjecture: gluing should be possible at harmonic level
- Localization results with harmonic and super-harmonic control
- PLF \& The-Cang Nguyen, 2020: The seed-to-solution method for the Einstein constraint equations
- Bruno Le Floch \& PLF, 2023

Figure: Gluing of the Euclidean metric and the Schwarzschild metric. Left: exact localization with sub-harmonic control Middle: asymptotic localization with harmonic control Right: exact localization with harmonic control

2．EXACT vs．ASYMPTOTIC LOCALIZATION PROBLEMS

Theorem．The seed－to－solution method
（PLF－Nguyen）
Given any seed data set（ \mathbf{M}, g_{1}, h_{1} ）on a 3－manifold（with a single end，say）： a Riemannian metric g_{1} and a symmetric two－tensor h_{1} satisfying（suitable smallness conditions and）

$$
\begin{gathered}
1 / 2<p_{G} \leqslant \min \left(1, p_{M}\right) \\
1 / 2<p_{M}<+\infty \\
h_{1}=\mathcal{O}\left(r^{-p_{G}-1}\right) \\
\mathcal{M}\left(g_{1}, h_{1}\right)=\mathcal{O}\left(r^{-p_{M}-2}\right)
\end{gathered}
$$

$$
\begin{aligned}
g_{1} & =g_{\text {Eucl }}+\mathcal{O}\left(r^{-p_{G}}\right) & h_{1} & =\mathcal{O}\left(r^{-p_{G}-1}\right) \\
\mathcal{H}\left(g_{1}, h_{1}\right) & =\mathcal{O}\left(r^{-p_{M}-2}\right) & \mathcal{M}\left(g_{1}, h_{1}\right) & =\mathcal{O}\left(r^{-p_{M}-2}\right)
\end{aligned}
$$

there exists a solution (g, h) to the vacuum Einstein equations $\mathcal{G}(g, h)=0$ ．
－Sub－harmonic decay：$p_{M}<1$

$$
g=g_{1}+\mathcal{O}\left(r^{-p_{M}}\right) \quad h=h_{1}+\mathcal{O}\left(r^{-p_{M}-1}\right)
$$

－Harmonic decay：$p_{M}=1$

$$
g=g_{1}+\frac{\tilde{m}}{r}+o\left(r^{-1}\right)
$$

$$
\begin{aligned}
& \mathcal{H}\left(g_{1}, h_{1}\right) \text { and } \mathcal{M}\left(g_{1}, h_{1}\right) \text { in } L^{1}(M) \\
& h=h_{1}+\mathcal{O}\left(r^{-2}\right)
\end{aligned}
$$

－Super－harmonic decay：$p_{M}>1$

$$
p=\min \left(p_{G}+1, p_{M}, 2\right)
$$

$$
g=g_{1}+\frac{\tilde{m}}{r}+\mathcal{O}\left(r^{-p}\right) \quad h=h_{1}+\mathcal{O}\left(r^{-2}\right)
$$

Mass modulator $\tilde{m}=\tilde{m}\left(g_{1}, h_{1}\right)=$ const． $\int_{\mathrm{M}} \mathcal{H}\left(g_{1}, h_{1}\right) d V_{g_{1}}+\mathcal{O}\left(\mathcal{G}\left(g_{1}, h_{1}\right)^{2}\right)$

Exact localization problem

- Vacuum constraint Einstein equations

Decompose asymptotic infinity into three angular regions

- \mathscr{C}_{a} : cone with (possibly arbitrarily small) angle $a \in(0,2 \pi)$
- $\mathscr{C}_{a+\varepsilon}^{c}$: complement of the same cone with (slightly) larger angle $a+\varepsilon$
- $\mathcal{T}_{a}^{\varepsilon}$: remaining transition region
\mathscr{C}_{a} and $\mathscr{C}_{a+\varepsilon}^{c}$: the metric coincides with Euclidean/Schwarzschild ones solve the vacuum Einstein equations in the transition region $\mathscr{T}_{a, \varepsilon}$
- Sub-harmonic control in $\mathscr{T}_{\mathrm{T}, \varepsilon}$, that is, r^{-p} with $p \in(1 / 2,1)$
- Question raised by Carlotto and Schoen
construct solutions (with prescribed asymptotic)
enjoying the $1 / r$ harmonic decay in all angular directions

Asymptotic localization problem

slightly relax the localization condition

- asymptotic at a super-harmonic rate to prescribed metrics
- physically as natural as the exact localization problem

Theorem. The asymptotic localization problem (PLF-Nguyen)

- Vacuum Einstein equations on a manifold \mathbf{M} with a single asymptotic end
- Decompose asymptotic infinity into three asymptotic angular regions

$$
\mathscr{C}_{a} \cup \mathscr{C}_{a+\varepsilon}^{c} \cup \mathscr{T}_{a, \varepsilon} \subset \mathbb{R}^{3}
$$

By considering (for instance) the Euclidean metric $g_{\text {Eucl }}$ and the Schwarzschild metric $g_{\text {Sch }}=\left(1+2 m_{\text {Sch }} / r\right) g_{\text {Eucl }}\left(\right.$ with mass $\left.m_{\text {Sch }}>0\right)$, there exists a solution to vacuum Einstein equations $\mathcal{G}(g, h)=0$:

$$
\begin{array}{lll}
g=g_{\text {Eucl }}+\mathcal{O}\left(r^{-q}\right) & \text { in } \mathscr{C}_{a+\varepsilon}^{c} & \\
g=g_{\text {Sch }}+\mathcal{O}\left(r^{-q}\right) & \text { in } \mathscr{C}_{a} & q \in(1,2) \\
g=g_{\text {Eucl }}+\mathcal{O}\left(r^{-1}\right) & \text { in } \mathscr{T}_{a, \varepsilon} &
\end{array}
$$

3. A PARAMETRIZATION of INITIAL DATA SETS

Definition

A localized reference set $\left(\mathbf{M}, g_{0}, h_{0}, \omega\right)$ consists of

- Riemannian manifold (M, g_{0})
- symmetric (2,0)-tensor h_{0} on M
- localization weight $\omega \in[0,+\infty]$
- a smooth open set $\Omega \subset \mathbf{M}$, referred to as the gluing domain

$$
\omega \begin{cases}>0 & \text { in the gluing domain } \Omega \\ \rightarrow 0 & \text { when approaching } \partial \Omega \text { from } \Omega \\ \rightarrow 0 & \text { at asymptotic ends } \\ =+\infty & \text { in }{ }^{c} \Omega\end{cases}
$$

- $\omega:=\frac{\mathrm{b}}{\mathrm{r}} \in[0,+\infty]$
- asymptotic radius $\mathbf{r}: \mathbf{M} \rightarrow[1,+\infty)$
$\mathbf{r} \simeq\left(1+\left(\mathbf{d}_{g_{0}}\left(\cdot, y_{0}\right)\right)^{2}\right)^{1 / 2}$
for some (fixed) point $y_{0} \in \mathbf{M}$
- boundary distance $\mathbf{b}: \mathbf{M} \rightarrow(0,1]$ large integer $N \geqslant 1$

$$
\mathbf{b} \begin{cases}\simeq \min \left(1,\left(\mathbf{d}_{\partial \Omega} / \mathbf{r}\right)^{N}\right) & \text { in the gluing domain } \Omega \\ =+\infty & \text { in the fixed domain }{ }^{\complement} \Omega\end{cases}
$$

- Weighted Hölder spaces $C_{p}^{1, \alpha}\left(\mathbf{M}, g_{0}, \omega\right)$ with

$$
\|f\|_{g_{0}, \omega, p}^{\prime, \alpha}=\sum_{|L| \leqslant 1} \sup _{\mathrm{M}}\left(\mathbf{b} \omega^{p+|L|}\left|\nabla^{L} f\right|_{g_{0}}\right)+\sum_{|L|=1} \sup _{\mathrm{M}}\left(\mathbf{b} \omega^{p+|L|+\alpha} \llbracket \nabla^{L} f \rrbracket_{g_{0}, \alpha}\right)
$$

- Weighted Lebesgue spaces (and Sobolev spaces, etc.):

$$
\|f\|_{L_{\rho}^{2}\left(\mathbf{M}, g_{0}, \omega\right)}^{2}:=\int_{\mathrm{M}}|f|_{g_{0}}^{2} \mathbf{b} \omega^{2 p-n} d V_{g_{0}}
$$

- Weighted Lebesgue-Hölder spaces $L^{2} C_{\omega}^{l, \alpha}\left(\mathbf{M}, g_{0}\right)$ with

$$
\left(\|f\|_{g_{0}, \omega, p}^{l_{\alpha}, \alpha}\right)^{2}:=\left(\|f\|_{L_{p}^{2}\left(\mathrm{M}, g_{0}, \omega\right)}\right)^{2}+\left(\|f\|_{C_{p}^{\prime, \alpha}\left(\mathrm{M}, \mathrm{~g}_{0}, \omega\right)}\right)^{2}
$$

Definition

Consider a localized reference set $\left(\mathbf{M}, g_{0}, h_{0}, \omega\right)$ and some parameters $\varepsilon_{G}, \varepsilon_{M}>0$. Consider decay and accuracy exponents (p_{G}, q_{G}) and (p_{M}, q_{M})

$$
\left(p_{M}, q_{M}\right) \geqslant\left(p_{G}, q_{G}\right)
$$

A $\left(p_{G}, q_{G}, p_{M}, q_{M}\right)$-localized seed data set $\left(g_{1}, h_{1}, H_{\star}, M_{\star}\right)$ consists of:

- Near-reference data
g_{1} is a Riemannian metric
h_{1} is a symmetric (2,0)-tensor

$$
\left\|g_{1}-g_{0}\right\|_{g_{0}, \omega, p_{G}}^{N, \alpha} \leqslant \varepsilon_{G} \quad\left\|h_{1}-h_{0}\right\|_{g_{0}, \omega, q_{G}}^{N-1, \alpha} \leqslant \varepsilon_{G}
$$

- Near-Einsteinian data
H_{\star} is a scalar field and M_{\star} is a vector field and

$$
\begin{array}{r}
\left\|\mathcal{H}\left(g_{1}, h_{1}\right)-H_{\star}\right\|_{g_{0}, \omega, p_{M}+2}^{N-4, \alpha} \leqslant \varepsilon_{M} \\
\left\|\mathcal{M}\left(g_{1}, h_{1}\right)-M_{\star}\right\|_{g_{0}, \omega, q_{M}+1}^{N-3, \alpha} \leqslant \varepsilon_{M}
\end{array}
$$

- metrics with possibly slow decay
- treat, together, the Einstein operator on (g_{1}, h_{1}) and the matter content

We seek to make a "projection" of each $\left(g_{1}, h_{1}\right)$ on the "solution manifold".

Variational framework

Given (f, V) consider the functional

$$
\int_{M}\left(\frac{1}{2}\left|d \mathcal{H}_{\left(g_{1}, h_{1}\right)}^{*}[u, Z]\right|^{2} \mathbf{b} \omega^{2 p-n}+\frac{1}{2}\left|d \mathcal{M}_{\left(g_{1}, h_{1}\right)}^{*}[u, Z]\right|^{2} \mathbf{b} \omega^{2 q-n}-f u-g_{1}(V, Z)\right) d V_{g_{1}}
$$

Euler-Lagrange equation

$$
\begin{aligned}
& (u, Z) \text { minimizer: fourth-order PDEs } \\
& g-g_{1}=\mathbf{b} \omega^{2 p-n} d \mathcal{H}_{\left(g_{1}, h_{1}\right)}^{*}[u, Z] \\
& h-h_{1}=\mathbf{b} \omega^{2 q-n} d \mathcal{M}_{\left(g_{1}, h_{1}\right)}^{*}[u, Z] \\
& (f, V)=d \mathcal{G}_{\left.\left(g_{1}, h_{1}\right)\right)}\left[g-g_{1}, h-h_{1}\right]
\end{aligned}
$$

Fixed-point's Picard scheme

- quadratic part of the Einstein operator decay properties of nonlinearities

$$
\mathcal{Q}_{\left(g_{1}, h_{1}\right)}\left[g_{2}, h_{2}\right]:=\mathcal{G}(g, h)-\mathcal{G}\left(g_{1}, h_{1}\right)-d \mathcal{G}_{\left(g_{1}, h_{1}\right)}\left[g_{2}, h_{2}\right]
$$

- study sequences $\left(f_{i}, V_{i}\right)$ and (g_{i}, h_{i})

$$
\begin{aligned}
& \left(f_{i}, V_{i}\right):=-\mathcal{Q}_{\left(g_{1}, h_{1}\right)}\left[g_{i-1}, h_{i-1}\right]+\left(H_{\star}, M_{\star}\right)-\mathcal{G}\left(g_{1}, h_{1}\right) \\
& \left(g_{i}, h_{i}\right):=(d \mathcal{G})_{\left(g_{1}, h_{1}\right)}^{-1}\left(f_{i}, V_{i}\right)
\end{aligned}
$$

Operator $d \mathcal{G}_{\left(g_{0}, h_{0}\right)} \circ($ weights $) \circ d \mathcal{G}_{\left(g_{0}, h_{0}\right)}^{*}$
with $w_{p}=\mathbf{b} \omega^{2 p-n}$ and $w_{q}=\mathbf{b} \omega^{2 q-n}$

$$
\begin{aligned}
d \mathcal{H}\left[w_{p} d \mathcal{H}^{*}[u]\right]= & (n-1) \Delta\left(w_{p} \Delta u\right)+\left(\nabla^{i} \nabla^{j} w_{p}-w_{p} R^{i j}\right)\left(\nabla_{i} \nabla_{j} u-R_{i j} u\right) \\
& -\left(\Delta w_{p}-2 w_{p} R\right) \Delta u \\
& +\left(2 R \nabla_{i} w_{p}+\frac{3}{2} w_{p} \nabla_{i} R\right) \nabla^{i} u+\frac{1}{2}\left(\Delta\left(w_{p} R\right)+\left(\Delta w_{p}\right) R\right) u \\
d \mathcal{M}\left[w_{q} d \mathcal{M}^{*}[Z]\right]^{i}= & -\frac{1}{2} w_{q}\left(\nabla_{j} \nabla^{j} Z^{i}+\nabla_{j} \nabla^{i} Z^{j}\right)-\frac{1}{2} \nabla_{j} w_{q}\left(\nabla^{j} Z^{i}+\nabla^{i} Z^{j}\right)
\end{aligned}
$$

In the vicinity of an asymptotically Euclidian end: $e_{i j}=\delta_{i j}$

$$
\begin{aligned}
& \mathcal{A}_{e, w_{p}}[u]:=(n-1) \Delta_{e}\left(w_{p} \Delta_{e} u\right)+\left(\partial_{i} \partial_{j} w_{p}\right) \partial_{i} \partial_{j} u-\left(\Delta_{e} w_{p}\right) \Delta_{e} u \\
& \mathcal{B}_{e, w_{q}}[Z]^{i}:=-\frac{1}{2} w_{q}\left(\Delta_{e} Z^{i}+\partial_{j} \partial_{i} Z^{j}\right)-\frac{1}{2}\left(\partial_{j} w_{q}\right)\left(\partial_{j} Z^{i}+\partial_{i} Z^{j}\right)
\end{aligned}
$$

Solution mapping

order of regularity $N \geqslant 4$ and Hölder exponent $\alpha \in(0,1]$

Definition

- a localized reference set $\left(\mathbf{M}, g_{0}, h_{0}, \omega\right)$ and parameters $\varepsilon_{G}, \varepsilon_{M}>0$
- pairs $\left(p_{G}, q_{G}\right)$ and $\left(p_{M}, q_{M}\right)$ with $\left(p_{M}, q_{M}\right) \geqslant\left(p_{G}, q_{G}\right)$
- pair of exponents (p, q)

To any $\left(p_{G}, q_{G}, p_{M}, q_{M}\right)$-localized seed data set $\left(g_{1}, h_{1}, H_{\star}, M_{\star}\right)$, the (p, q)-localized seed-to-solution map associates a scalar-valued field u and a vector-valued field Z :

$$
g=g_{1}+\mathbf{b} \omega^{2 p-n} d \mathcal{H}_{\left(g_{1}, h_{1}\right)}^{*}(u, Z) \quad h=h_{1}+\mathbf{b} \omega^{2 q-n} d \mathcal{M}_{\left(g_{1}, h_{1}\right)}^{*}(u, Z)
$$

obey the Einstein constraints $\mathcal{G}(g, h)=\left(H_{\star}, M_{\star}\right)$
Lebesgue-Hölder norm

$$
\left.\begin{array}{l}
\left\|\left\|g-g_{1}\right\|_{g_{0}, \omega, p}^{N, \alpha} \leqslant \varepsilon_{G}\right. \\
\left\|h-h_{1}\right\|_{g_{0}, \omega, q}^{N-1, \alpha} \leqslant \varepsilon_{G} \\
\quad\|u\|_{g_{0}, \omega, p}^{N, \alpha}
\end{array} \quad \lesssim\left\|\mathcal{H}\left(g_{1}, h_{1}\right)-H_{\star}\right\|_{g_{0}, \omega, p+2}^{N-4, \alpha}+\varepsilon_{G}\left\|\mathcal{M}\left(g_{1}, h_{1}\right)-M_{\star}\right\|_{g_{0}, g_{0}, \omega, q+1}^{N-3, \alpha}\right)
$$

Our parametrization

Definition

Equivalence relation is defined between two pairs of tensors (g_{1}, h_{1}) and (g, h)

$$
g=g_{1}+\mathbf{b} \omega^{2 p-n} d \mathcal{H}_{\left(g_{0}, h_{0}\right)}^{*}(u, Z), \quad h=h_{1}+\mathbf{b} \omega^{2 q-n} d \mathcal{M}_{\left(g_{0}, h_{0}\right)}^{*}(u, Z)
$$

for some scalar field u and vector field $Z \quad(g, h) \sim_{(\omega, p, q)}\left(g_{1}, h_{1}\right)$.

Definition

For any given matter data H_{\star}, M_{\star} (possibly vacuum data) the corresponding solution map $\mathcal{S}_{\omega, p, q}$ sending a (seed data) element (g_{1}, h_{1}) to one of its representative (exact solution) in the same class [$\left.\left(g_{1}, h_{1}\right)\right]$, namely

$$
\mathcal{S}_{\omega, p, q}:\left(g_{1}, h_{1}\right) \in \mathcal{E}_{\varepsilon_{G}, \varepsilon_{M}}\left(p_{G}, q_{G} ; p_{M}, q_{M}\right) \mapsto(g, h) \in\left[\left(g_{1}, h_{1}\right)\right]
$$

is referred to as the localized seed-to-solution parametrization for Einstein's constraint equations in the vicinity of the localized reference set ($\mathbf{M}, g_{0}, h_{0}, \omega$).

- make a specific choice of reference g_{0}, h_{0}
- establish weighted Poincaré and weighted Korn inequalities
- conditions required: geometry of the gluing domain, decay/accuracy exponents

Coercivity and elliptic regularity

- linearization $d \mathcal{G}_{\left(g_{1}, h_{1}\right)}$ of the Einstein operator \mathcal{G} around $\left(g_{1}, h_{1}\right)$
- not elliptic unless a gauge choice is made
- restrict the deformation (u, Z) to lie in the image of the dual operator $d \mathcal{G}_{\left(g_{1}, h_{1}\right)}^{*}$, up to weights that suitably localize the deformation of interest
- invertibility of the fourth-order operator $d \mathcal{G}_{\left(g_{1}, h_{1}\right)} \circ($ weights $) \circ d \mathcal{G}_{\left(g_{1}, h_{1}\right)}^{*}$
- weighted Hölder-Sobolev spaces
- weighted Poincaré inequality, weighted Korn inequality
- elliptic system in the sense of Douglis-Nirenberg, Hölder interior regularity estimates

