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1. TOPIC for THIS LECTURE

Einstein’s constraint equations “prescribed curvature problem”
> manifold (M, g, k) with finitely many asymptotic ends

> unknowns: Riemannian metric g and symmetric (0, 2)-tensor field k

extrinsic curvature in the dynamical picture
> matter content: scalar field H, : M — R, vector field M,

» Einstein’'s Hamiltonian and momentum constraints

Ry + (Trgk)® — |k|2 = H, Divg (k — (Trgk)g) = M.
Notation
It is convenient to introduce the (2,0)-tensor h by h := (k — Trg(k)g)ijij
1 :
H(g, h) == Ry + 5(Trgh)2 — |h|2 M g, h) := Divgh

G(g,h) = (H, M)(g, h) = (Hs, M)

In the dynamical picture, G(g, h) is a spacetime vector.



Vast and rich literature

» Conformal method Lichnerowicz (1960s), Choquet-Bruhat, Chrusciel, Corvino, Delay,

Dilts, Galloway, Gicquaud, Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, Schoen, etc.

» Variational method Corvino, Corvino-Schoen, Chrusciel-Delay, Carlotto-Schoen, etc.

Major achievements

» existence of initial data, explicit constructions, physically relevant solutions

» general relativity, Riemannian geometry

> numerous classes of solutions: compact, various types of asymptotic ends

> including gluing techniques, combine two different solutions together

» A. Carlotto, The general relativistic constraint equations, Living Reviews
in Relativity (2021).

> Very active subject: Lee, Lesourd, Corvino, Pasqualotto, etc.



Shielding gravity: localization at infinity

» asymptotically Euclidean initial data sets

» phenomena of anti-gravity (or shielding) Carlotto and Schoen
Chrusciel and Delay

» solutions that are localized at infinity
» The Positive Mass Theorem implies restrictions on gluing at infinity.
» identically Euclidian near infinity except in a cone with possibly
arbitrary small angle

> Other recent developments

» S. Aretakis, S. Czimek, |. Rodnianski: characteristic gluing problem
» Y.-C. Mao and Z.-K. Tao: localization “a la Carlotto-Schoen” in narrow domains

Localization with (super-)harmonic control

» Carlotto and Schoen

» solutions with sub-harmonic control rP with p € (52,0 —2)

2
» conjecture: gluing should be possible at harmonic level

» Localization results with harmonic and super-harmonic control

» PLF & The-Cang Nguyen, 2020: The seed-to-solution method for
the Einstein constraint equations

» Bruno Le Floch & PLF, 2023



Figure: Gluing of the Euclidean metric and the Schwarzschild metric.
Left: exact localization with sub-harmonic control

Middle: asymptotic localization with harmonic control

Right: exact localization with harmonic control



2. EXACT vs. ASYMPTOTIC LOCALIZATION PROBLEMS

Theorem. The seed-to-solution method (PLF—Nguyen)

Given any seed data set (M, g1, h1) on a 3-manifold (with a single end, say):
a Riemannian metric g1 and a symmetric two-tensor h;

satisfying (suitable smallness conditions and) 1/2 < pc < min(1, pm)
1/2 < pm < +0

g1 = Zeuwa + O(r °¢) hi = O(r P

H(gr, ) = O(r"7%) M(g1, i) = O(r—™7?)

there exists a solution (g, h) to the vacuum Einstein equations G(g, h) = 0.

» Sub-harmonic decay: py < 1

g = g+ O(r¥) h= by + O(r~Pu1)

» Harmonic decay: py =1 H(g1, h1) and M(g1, h1) in L' (M)
g=ga + ? + o(r_l) h= h + O(r_2)

» Super-harmonic decay: py > 1 p = min(pg + 1, pm, 2)
g=g + % + O(r~?) h= h + O(r_z)

Mass modulator m = m(g1, m) = const. {, H(g1, ) dVg + O(G(g1, m)?)




Exact localization problem Carlotto and Schoen

— Vacuum constraint Einstein equations

Decompose asymptotic infinity into three angular regions
» ¢, cone with (possibly arbitrarily small) angle a € (0, 27)
» Csp.: complement of the same cone with (slightly) larger angle a + ¢

» J.°: remaining transition region

%> and %5, .: the metric coincides with Euclidean/Schwarzschild ones

solve the vacuum Einstein equations in the transition region .7, .
— Sub-harmonic control in 7, -, that is, r P with pe (1/2,1)

— Question raised by Carlotto and Schoen

construct solutions (with prescribed asymptotic)

enjoying the 1/r harmonic decay in all angular directions
1/rP region

:/ < Schwarzschild
EucHdeaQ )

/
AN 1/rP region



Asymptotic localization problem

slightly relax the localization condition

— asymptotic at a super-harmonic rate to prescribed metrics

— physically as natural as the exact localization problem 1/r region

Theorem. The asymptotic localization problem (PLF-Nguyen)

— Vacuum Einstein equations on a manifold M with a single asymptotic end

— Decompose asymptotic infinity into three asymptotic angular regions
CoLCe U T R
By considering (for instance) the Euclidean metric ge,q and the Schwarzschild

metric gsch = (1 4+ 2msch/r) geua (With mass msq, > 0),
there exists a solution to the vacuum Einstein equations G(g, h) = 0:

g = 8Euc T O(r_q) in ac+€
g = gsch + O(r ) in ¢, qge(1,2)
g = 8Eucd + O(F_l) in z,e




3. A PARAMETRIZATION of INITIAL DATA SETS

A localized reference set (M, gy, ho,w) consists of
— Riemannian manifold (M, go)

— symmetric (2,0)-tensor hg on M

— localization weight w € [0, + 0]

» a smooth open set {2 — M, referred to as the gluing domain

(>0 in the gluing domain Q
< — 0 when approaching 0€2 from 2
W
— 0 at asymptotic ends

=40 in'Q

» w:=2¢€[0,+0]
» asymptotic radius r : M — [1, +0) r~ (1+ (dgo(-,yo))z)l/2
for some (fixed) point yp € M
» boundary distance b : M — (O, 1] large integer N > 1

— 4o in the fixed domain ‘Q

. {~ min (1, (daQ/r)N> in the gluing domain Q




» Weighted Hélder spaces C;“(M, go,w) with

£z = Syujersupw (o [V Flgy ) + 3, supw (b1 [V g0 )

» Weighted Lebesgue spaces (and Sobolev spaces, etc.):

Hin%(M,go,w) = SM ‘ﬂé‘o bW~ dVeg,

» Weighted Lebesgue-Holder spaces L>CL*(M, go) with

U ll52)” = (Il zmg0) + (IFlche g w)




Consider a localized reference set (M, go, ho, w) and some parameters ¢, em > 0.
Consider decay and accuracy exponents (pg, ) and (pm, gm)

(pm, gm) = (P, qc)
A (pG,qc, pm, gu)-localized seed data set (g1, hi, H., M.) consists of:

> Near-reference data
g1 is a Riemannian metric

hi is a symmetric (2, 0)-tensor

ler — gollgySpe <€ |l — hollg e < cec

» Near-Einsteinian data

H, is a scalar field and M, is a vector field and
N—4, «

[#(g1, hn) - H*mgo,w,pmﬂ S Em
e )~ ML <

» metrics with possibly slow decay
> treat, together, the Einstein operator on (gi, h1) and the matter content

We seek to make a “projection” of each (g1, h1) on the “solution manifold”. J




Variational framework Corvino and Schoen

Given (f, V) consider the functional

1 2 _, 1 2 o
JM <§‘dH?g1>h1)[u’ Z]‘ bw2P T E‘szkgbhl)[u’ Z]‘ bwzq —fu— gl(V, Z)) dﬁi

Euler-Lagrange equation

(u, Z) minimizer: fourth-order PDEs
g—g1= bw2p_"d7-[zkgl,hl)[u, Z]
h—h =buw’ 7 "dM, ., [u, Z]

(fa V) - dg(gl,hl))[g — &1, h — hl]

Fixed-point’s Picard scheme

» quadratic part of the Einstein operator decay properties of nonlinearities
Qg ,h) 82, 2] == G(g, h) — G(g1, ) — dG(g,.m) |82, h2]
> study sequences (f;, V;) and (g, hi)

(fi, Vi) = = Q(g1,m) g1, hi—1] + (Hu, My) — G(g1, M)
(g1 hi) = (dG) gy py) (fis Vi)




Operator dG g, »,) © (weights) o dg(*go,ho)

2p—n n

with w, = bw and w, = bw??™
dH|wp dH*[u]] = (n — 1)A(w, Au) + (V'V'w, — w, RY)(VVju — Rju)
— (Awp, — 2w, R)Au

2

(
1
+ (2Rv,-w,, + 3w, V,-R)V’u + 5(A(W,, R) + (AWP)R>U
1 o o 1 o o
wo (V92! + V' Z) = =V we (V2 4+ V' Z)

dM[wy dM*[Z]]' = -3

In the vicinity of an asymptotically Euclidian end: e; = 0;

Ae,wy[U] == (n—1)Ac(wp Acu) + (0;0jwp )0i0ju — (Aewp)Aeu

. 1 . . 1 . .
Be,Wq [Z]’ = _qu (AeZ’ -+ é’j&-ZJ) — i(aqu)(ajzl + 8,-2’)




Solution mapping

order of regularity N > 4 and Holder exponent a € (0, 1]

> a localized reference set (M, go, ho,w) and parameters eg,epn > 0

> pairs (P, qc) and (pm, gu) with (pm, qm) = (pe, qc)
> pair of exponents (p, q)
To any (pe, 96, Pm, gm)-localized seed data set (g1, h1, Hi, M,),

the (p, g)-localized seed-to-solution map
associates a scalar-valued field v and a vector-valued field Z:

g=g +bw® "dH{ , (u,Z)  h=m+bTT"dMF , (u,2)

(glahl)

obey the Einstein constraints G(g, h) = (H., M.) Lebesgue-Halder norm
N,
e = &l < e
lIh = bl o < e
lules.o < [[H(er, 1) = Hell g 57 o +ea MG ) = MUl 0%
|21 e [[Hler ) = Hullg, 07+ 1M ey ) = Ml S




Our parametrization

Equivalence relation is defined between two pairs of tensors (gi, h1) and (g, h)
g=g +buw?" dH g p) (U, Z), h=h+ bw ™" dM g ho) (U, Z)

for some scalar field u and vector field Z (8, h) ~w,p.q (81,h)

y

For any given matter data H., M, (possibly vacuum data)

the corresponding solution map S, 5.4
sending a (seed data) element (g1, h1) to one of its representative (exact solution)

in the same class [(gi, h1)], namely

Sw,p,q : (gla hl) € g&tG,eM (pG7 ac; Pm, qM) = <g7 h) € [<g17 hl)]

is referred to as the localized seed-to-solution parametrization for Einstein’s
constraint equations in the vicinity of the localized reference set (M, go, ho,w).
4

» make a specific choice of reference go, ho
» establish weighted Poincaré and weighted Korn inequalities

» conditions required: geometry of the gluing domain, decay/accuracy
exponents




Coercivity and elliptic regularity

>

4

>

linearization dGg, ) of the Einstein operator G around (g1, h1)
not elliptic unless a gauge choice is made

restrict the deformation (u, Z) to lie in the image of the dual operator
dgg; hy)r UP to weights that suitably localize the deformation of interest

invertibility of the fourth-order operator dG,, »,) © (weights) o dg(*gl’hl)
weighted Holder-Sobolev spaces
weighted Poincaré inequality, weighted Korn inequality

elliptic system in the sense of Douglis-Nirenberg, Holder interior regularity
estimates



