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Previous results

Before presenting our results, I would first like to recall previous
results, which have been or will soon be published :

C. Bataillon, M. Bouguezzi, D. Hilhorst, F. Lequien, H. Matano, F.
Rouillard, J.-F. Scheid, Anodic dissolution model with
diffusion-migration transport for simulating localized corrosion,
Electrochimica Acta 477 (2024).

Meriem Bouguezzi, Danielle Hilhorst, Yasuhito Miyamoto,
Jean-François Scheid, Convergence to a self-similar solution for a
one-phase Stefan problem arising in corrosion theory. European J.
Appl. Math. 34 (2023), 701-737.
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The formation of a pit

We consider a pure iron steel in contact with an aqueous solution of
sodium chloride (NaCl). One of the major failure mechanisms in an
aggressive aqueous solution is pitting corrosion. It is generally
associated to the presence of a special anion, namely the chloride ion.
The presence of such an ion leads to the formation of small isolated
holes (pits) on the surface of the steel that may reach a considerable
depth. The life cycle of a stainless alloy decreases in the presence of
corrosion.
In this talk, we focus on a physical model which aims to describe the
propagation process of one individual corrosion pit.
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The formation of a pit
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Figure: A one dimensional corrosion pit.
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A simplified mathematical problem

The mathematical problem has the form of one-dimensional
one-phase Stefan problem, namely

ut = uxx , t > 0,0 < x < s(t),
u(0, t) = h, t > 0,
u(s(t), t) = 0, t > 0,
ds(t)

dt
= −ux(s(t), t), t > 0,

s(0) = b0,

u(x ,0) = u0(x), 0 < x < b0

(1)

where x = s(t) is the unknown free boundary which is to be found
together with u(x , t).
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The one-dimensional one-phase Stefan problem

Let h > 0, b > 0. We define the set

X h(b) := {v ∈ C[0,∞), v(0) = h, v(x) ⩾ 0 for 0 ⩽ x < b,
v(x) = 0 for x ⩾ b} (2)

and suppose that
u0 ∈ X h(b0).

Let (u(x , t), s(t)) be a solution of (1) for all 0 ⩽ t ⩽ T . We extend u by:

u(x , t) = 0 for x ⩾ s(t), (3)

so that u(·, t) is defined for all x ⩾ 0.
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Existence and uniqueness

Theorem (Friedman, Schaeffer) Let h > 0,b > 0 and u0 ∈ X h(b).
Then, there exists a unique classical solution (u(x , t), s(t)) of Problem
(1) for all t > 0. Moreover, the solution (u, s) is such that s is infinitely
differentiable on (0,∞) and u is infinitely differentiable up to the free
boundary for all t > 0. Furthermore, the function s(t) is strictly
increasing in t , and the function u satisfies 0 ≤ u ≤ h.
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The self-similar solution

We look for a self-similar solution in the formu(x , t) = U
(

x√
t + 1

)
,

s(t) = a
√

t + 1,
(4)

for some positive constant a still to be determined. We set

η :=
x√

t + 1
(5)

and deduce that {
Uηη +

η

2
Uη = 0, 0 < η < a,

U(0) = h, U(a) = 0.
(6)

The unique solution of (6) is given by

U(η) = h
[
1 −

∫ η
0 e− s2

4 ds∫ a
0 e− s2

4 ds

]
for all η ∈ (0,a).
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Determination of the constant a

It remains to determine the constant a. We write that

s′(t) =
a

2
√

t + 1
= −ux(s(t), t) = −

Uη

(
s(t)√
t + 1

)
√

t + 1
,

which implies that
a
2
= −Uη(a), (8)

so that a is characterized as the unique solution of the equation

h =
a
2

e
a2
4

∫ a

0
e− s2

4 ds. (9)

We remark that the function a = a(h) is strictly increasing, which in
turn implies that the functional h → U is strictly increasing.
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Change of coordinates

Now, the question is : in what sense can we prove the convergence to
the self-similar solution? We are dealing with x and t coordinates as
well as with the similarity variable η. This leads us to set τ = ln(t + 1),
and W (η, τ) = u(x , t),

b(τ) =
s(t)√
t + 1

,
(10)

with η given by (5). We obtain the problem
Wτ = Wηη +

η

2
Wη, τ > 0, 0 < η < b(τ),

W (0, τ) = h, W (b(τ), τ) = 0, τ > 0,
db(τ)

dτ
+

b(τ)
2

= −Wη(b(τ), τ), τ > 0,

(11)

Danielle Hilhorst Convergence to a self-similar solution FJ-LMI and University of Tokyo 10 / 35



The full problem in self-similar coordinates

Next, we write the full time evolution problem corresponding to the
system (11). It is given by

Wτ = Wηη +
η

2
Wη, τ > 0, 0 < η < b(τ),

W (0, τ) = h, τ > 0,
W (b(τ), τ) = 0, τ > 0,
db(τ)

dτ
+

b(τ)
2

= −Wη(b(τ), τ), τ > 0,

b(0) = b0,

W (η,0) = u0(η), 0 ⩽ η ⩽ b0.

(12)

Finally, we note that the stationary solution of Problem (12) coincides
with the unique solution of Problem (6), (9) or in other words, with the
self-similar solution of Problem (1).
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Main result : Convergence to the self-similar solution

Theorem Let u0 ∈ X h(b0) ∩W1,∞(
0,b0

)
. Let

(W ,b) =
(
W (·, ·, (u0,b0)) ,b(·, (u0,b0))

)
be the solution of Problem

(17) with the initial data (u0,b0). Then

lim
τ→+∞

W (η, τ) = U(η) for all η ∈ (0,a) (13)

and
lim

τ→+∞
b(τ) = a (14)

where (U,a) is the unique solution of the stationary Problem (6) and
(15).
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Ideas for the proof

Construct lower and upper solutions and apply a comparison principle.

Main difficulty : Prove that the limit solution satisfies the interface
condition a

2
= −Uη(a). (15)

To that purpose, we proved that the derivative Wη converges unformly
to its limit as τ → ∞, using a regularity theorem from the book of Gary
Lieberman about parabolic equations.

Criticism of Piotr Rybka : there would not be any way to transpose this
proof to the case where the Laplacian in the heat equation would be
replaced by a fractional Laplacian.

Today we replace the application of Lieberman’s result by passing to
the limit in a weak form of the Stefan problem.
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The new problem, with a Neumann boundary condition

We study again the same problem, however with the Dirichet boundary
condition replaced by a Neumann boundary condition, namely

ut = uxx , t > 0,0 < x < s(t),
−ux(0, t) = h/

√
t + 1, t > 0,

u(s(t), t) = 0, t > 0,
ds(t)

dt
= −ux(s(t), t), t > 0,

s(0) = b0,

u(x ,0) = u0(x), 0 < x < b0

(16)

where x = s(t) is the unknown free boundary which is to be found
together with u(x , t). This is another model problem from literature.
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The corresponding problem in self-similar coordinates

Next, we write the full time evolution problem corresponding to the
system (16). It is given by

Wτ = Wηη +
η

2
Wη, τ > 0, 0 < η < b(τ),

−Wη(0, τ) = h, τ > 0,
W (b(τ), τ) = 0, τ > 0,
db(τ)

dτ
+

b(τ)
2

= −Wη(b(τ), τ), τ > 0,

b(0) = b0,

W (η,0) = u0(η), 0 ⩽ η ⩽ b0.

(17)
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The corresponding steady state problem

The associated stationary problem is given by
Wηη +

η

2
Wη = 0, 0 < η < a,

−Wη(0) = h, W (a) = 0,
a
2
= −Wη(a).

(18)

Problem (18) admits a unique solution given by the pair (U,a) such
that

U(η) = h
∫ a

η
e− s2

4 ds, η ∈ [0,a] (19)

and a is the unique positive solution of the equation h =
x
2

e
x2
4 .
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Upper- and lower solutions

Definition

We define the linear operator L(W ) := Wτ − Wηη −
η

2
Wη. The pair

(W
¯
,b
¯
) is a lower solution of Problem (17) if it satisfies:

L(W
¯
) = W

¯ τ − W
¯ ηη −

η

2
W
¯ η ⩽ 0, τ > 0, 0 < η < b

¯
(τ),

−W
¯ η(0, τ) ⩽ h, W

¯
(b
¯
(τ), τ) = 0, τ > 0,

db
¯
(τ)

dτ
+

b
¯
(τ)

2
⩽ −W

¯ η(b¯
(τ), τ), τ > 0,

b
¯
(0) ⩽ b0,

W
¯
(η,0) ⩽ u0(η), 0 ⩽ η ⩽ b

¯
(0).

(20)

Similarly, (W̄ , b̄) is an upper solution of the Problem (17) if it satisfies
Problem (20) with all ⩽ replaced with ⩾.
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Comparison principle

One can prove the following comparison principle.

Theorem

Let
(
W1(η, τ),b1(τ)

)
and

(
W2(η, τ),b2(τ)

)
be respectively lower and

upper solutions of (17) corresponding respectively to the data
(h1,u01,b01) and (h2,u02,b02).
If b01 ⩽ b02, h1 ⩽ h2 and u01 ⩽ u02, then b1(τ) ⩽ b2(τ) for τ ⩾ 0 and
W1(η, τ) ⩽ W2(η, τ) for η ⩾ 0 and τ ⩾ 0.

In what follows we will keep using the notation W
(
η, τ, (u0,b0)

)
and

b
(
τ, (u0,b0)

)
for the solution pair associated with the initial data

(u0,b0).
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Stationary lower and upper solutions

In order to find stationary lower and upper solutions, we suppose that
λ is a positive constant and consider the perturbed problem

(i) Wηη(η) + λ
ηWη(η)

2
= 0 0 < η < bλ,

(ii) −Wη(0) = h̃, W (bλ) = 0,

(iii)
bλ

2
= −Wη(bλ).

(21)

whose solution is given by the pair (Wλ,bλ), where

Uλ(η) = h̃
∫ bλ

η
e−λs2/4ds,

where bλ is the unique solution of the equation

h̃ =
bλ

2
eλb2

λ/4. (22)
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Stationary lower and upper solutions

In order to define a lower solution, we suppose that h̃ ≤ h and that
λ > 1. Then the solution (Wλ,bλ) of Problem (21) is a lower solution of
Problem (17).

Similarly, set λ = 0, and suppose that b ≥ max (b0,2h), and define

W̄ (η) =
b
2
(b − η), if 0 ≤ η ≤ b.

Then the pair(W̄ ,b) is an upper solution of Problem (17).
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A typical configuration

Figure: Lower and upper solutions
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First convergence results

Next, we prove the monotonicity in time of the solution pair (W ,b) of
the time evolution Problem (17) with the two initial conditions (W̄ , b̄)
and (Wλ,bλ). We recall that (W (η, τ, (u0,b0)),b(τ, (u0,b0))) denotes
the solution pair of Problem (17) with the initial conditions (u0,b0).

Lemma Let
(
W̄ , b̄

)
and (W λ,bλ) be defined above. The functions

W
(
η, τ, (W̄ , b̄)

)
and b

(
τ, (W̄ , b̄)

)
are nonincreasing in time.

Furthermore, there exist a positive constant b̄∞ and a function
ϕ ∈ L∞(0, b̄∞) such that

lim
τ→+∞

W
(
η, τ, (W̄ , b̄)

)
= ϕ(η) for all η ∈ (0, b̄∞), (23)

lim
τ→+∞

b
(
τ, (W̄ , b̄)

)
= b̄∞. (24)
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Convergence results

The functions W
(
η, τ, (W λ,bλ)

)
and b

(
τ, (W λ,bλ)

)
are nondecreasing

in time. Furthermore, there exist a positive constant b
¯∞

and a function
ψ ∈ L∞(0,b

¯∞
) such that

lim
τ→+∞

W (η, τ, (W λ,bλ)) = ψ(η) for all η ∈ (0,b
¯∞

), (25)

lim
τ→+∞

b
(
τ, (W λ,bλ)

)
= b

¯∞
. (26)

It remains to prove that
ϕ = ψ = U

and that
b∞ = b∞ = a.
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An extra a priori estimate

Since (W λ,bλ) and since (W ,b) are respectively lower and upper
solutions, we have the L∞ estimates

W λ ≤ W (τ, (u0,b0)) ≤ W for all τ > 0,

and
bλ ≤ b(τ, (u0,b0)) ≤ b for all τ > 0,

and the same estimates hold when starting from the lower and upper
solutions. A next step is to prove that∫ T+1

T

∫ b(τ)

0
W 2

η (η, τ)dηdτ ≤ M1, (27)

where the constant M1 does not depend on T and where the initial
functions for W and b are either lower or upper solutions.
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Proof of the gradient bound

We multiply the partial differential equation for W by W and integrate
on ΩT ,1 := {(η, τ) : η ∈ (0,b(τ)), τ ∈ (T ,T + 1)}.This yields

L1(T ) =

∫
ΩT ,1

WWτ dηdτ =

∫
ΩT ,1

(WWηη +
η

2
WηW )dηdτ = R1(T ).

Then,

2L1(T ) =

∫
ΩT ,1

∂

∂τ
W 2(η, τ)dτdη

and∫
ΩT ,1

∂

∂τ
W 2(η, τ)dτdη =

∫ b(T+1)

0
W 2(η,T+1)dη−

∫ b(T )

0
W 2(η,T )dη,
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Proof of the gradient bound

Integration by parts in R1(T ) yields

R1(T ) = −
∫
ΩT ,1

W 2
η dτdη + h

∫ T+1

T
W (0, τ)dη − 1

4

∫
ΩT ,1

W 2 dτdη.

Writing that L1(T ) = R1(T ) then yields the result.
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A weak form of the Stefan problem

We multiply the partial differential equation by φ ∈ C∞
0 (R) and

integrate by parts. The left-hand-side becomes

L2(T ) =

∫ T+1

T

∫ b(τ)

0
Wτ φdηdτ,

L2(T ) =

∫ b(T+1)

0
W (η,T + 1)φ(η)dη −

∫ b(T )

0
W (η,T )φ(η)dη,

where W = W (η, τ,
(
W̄ , b̄

)
) or W = W

(
η, τ, (Wλ,bλ)

)
. Next, we

investigate the right-hand-side. Integration by parts yields

R2(T ) =

∫ T+1

T

∫ b(τ)

0
(Wηη +

η

2
Wη)φdηdτ,
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A weak form of the Stefan problem

or else, if φη(0) = 0,

R2(T ) =

∫ T+1

T

∫ b(τ)

0
(Wηηφdηdτ +

∫ T+1

T

∫ b(τ)

0

η

2
Wηφdηdτ,

=

∫ T+1

T

∫ b(τ)

0
W (φηη −

1
2
(ηφ)η)dηdτ −

∫ T+1

T
(ḃ +

b
2
)φ(b(τ)) + hφ(0).

(28)
Expressing that L2(T ) = R2(T ) yields the weak form∫ b(T+1)

0
W (η,T + 1)φ(η)dη −

∫ b(T )

0
W (η,T )φ(η)dη

=

∫ T+1

T

∫ b(τ)

0
W (φηη −

1
2
(ηφ)η)dηdτ −

∫ T+1

T
(ḃ +

b
2
)φ(b(τ)) + hφ(0),

for all φ ∈ C∞
0 (R) such that φη(0) = 0.
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Limit as τ → ∞
Next, we pass to the limit as T → ∞. It follows from Lebesgue’s
dominated convergence theorem that limT→∞ L2(T ) = 0 . As for the
right-hand-side, we obtain

lim
T→∞

∫ T+1

T

∫ b(τ)

0
W (η, τ)(φηη − (ηφ)η)dηdτ

=

∫ b∞

0
W∞(η)(φηη − (ηφ)η)dη,

where W∞ is either ψ or ϕ, and b∞ is either b∞ or b
∞

. Let us denote
by Φ an antiderivative of φ; then

lim
T→∞

∫ T+1

T
ḃ(τ)φ(b(τ))dτ = lim

T→∞
(Φ(b(T + 1))− Φ(b(T ))) = 0.

In addition,

lim
T→∞

∫ T+1

T

b(τ)
2

φ(b(τ))dτ =
1
2

b∞φ(b∞).
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Limit as τ → ∞

Finally, we collect all the results concerning R2(T ), while keeping in
mind that limT→∞ L2(T ) = 0. This yields∫ b∞

0
W∞(η)(φηη −

1
2
(ηφ)η)dη − b∞

2
φ(b∞) + hφ(0) = 0, (29)

for all φ ∈ C∞
0 (R) such that φη(0) = 0. Thus (W∞,b∞) is a steady

state solution of (17) in the sense of distributions. We now wish to
recover the ordinary differential equation as well as the two boundary
conditions and the condition on the interface.
Taking φ ∈ C∞

0 (0,b∞), we conclude that W∞ is a smooth function
which satisfies the steady state equation

W∞
ηη = −η

2
W∞

η for all η ∈ (0,b∞).
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Limit as τ → ∞

Next we search for the boundary conditions satisfied by W∞. After
integrating (29) twice by parts we obtain,

0 =W∞(b∞)φη(b∞)− W∞
η (b∞)φ(b∞) + W∞

η (0)φ(0)

− b∞

2
φ(b∞)(W∞(b∞) + 1) + hφ(0).

(30)

Now, if we additionally choose φ such that φ(b∞) = φη(b∞) = 0, then
(30) reduces to

φ(0)(W∞
η (0) + h) = 0,

and since φ(0) is arbitrary, we deduce that

−W∞
η (0) = h.
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Limit as τ → ∞
Thus (30) becomes

0 =W∞(b∞)φη(b∞)− W∞
η (b∞)φ(b∞)

− b∞

2
φ(b∞)(W∞(b∞) + 1)

(31)

Now, suppose that φ(b∞) = 0, but φη(b∞) ̸= 0. Then

φη(b∞)W∞(b∞) = 0,

and hence
W∞(b∞) = 0.

Then (31) becomes

0 = −W∞
η (b∞)φ(b∞)− b∞

2
φ(b∞). (32)

Suppose that φ(b∞) ̸= 0. Then (32) implies that

b∞

2
= −W∞

η (b∞).
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Limit as τ → ∞

We deduce that the solution pair (W∞,b∞) is the unique steady state
solution of the time evolution Problem (17), which coincides up to a
change of variables, with the unique self-similar solution of Problem
(16).

Our convergence result as τ → ∞ is essentially the same as the one I
have showed you for the Dirichlet problem.
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Projects with Professor Yasuhito Miyamoto

Extend our results to the case of
(i) the two-phase Stefan problems with zero latent heat;
(ii) the two-phase Stefan problems with positive latent heat.

Also we propose to consider Stefan problems with nonlinear
diffusion in collaboration with Elaine Crooks.
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I thank you for your attention
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