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@ Large-time behaviour of fractional nonlinear diffusion equation
@ Derivation of the equation
@ Decay estimates
@ Convergence to asymptotic profiles with energy method

© Numerical analysis of fractional nonlinear diffusion equation
@ Discretization of the equation
@ Analysis of the numerical scheme
@ Numerical illustrations of the large-time behaviour
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Large-time behaviour of fractional nonlinear diffusion equation

@ Large-time behaviour of fractional nonlinear diffusion equation
@ Derivation of the equation
@ Decay estimates
@ Convergence to asymptotic profiles with energy method
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Large-time behaviour of fractional nonlinear diffusion equation Derivation of the equation

Nonlocal diffusion equation with general interaction kernel

u(t, x) (| — yl)dxdy
0 /\ 0
u(t,x)dx' \_/ 'u(t,y)dy RY

u(t,y)J(ly — x[)dydx

u(t, x) : density, J(|]x — y|) : interaction kernel.
0t ) = [ u(t) =y = u(e) [ =y )ay
Rd JRrd
= PV [ (ulty) =~ u(ex)J(x ~ vy
for singular _/

femel 7 fim [ (u(ty) = u(ex)(x -
RI\B, (x)

r—0
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Large-time behaviour of fractional nonlinear diffusion equation Derivation of the equation

A particular choice of kernel: the fractional diffusion
equation

Choice of kernel: Ja(|x — y[) = i, a€(0,2).

= ey

Definition (Fractional Laplacian)

(=A)2 u(x) :== CyP.V. /R . Wdy,

(5

o FI(=A)7u](€) = [¢[*F[u](€),
° J% has a non-integrable singularity, and is heavy-tailed.

&
2

Fractional diffusion equation: O¢u+ (—A)2u = 0.
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Large-time behaviour of fractional nonlinear diffusion equation Derivation of the equation

Fractional nonlinear diffusion equation on bounded domain

dru+ (—A)2u™ = 0.

@ m > 1: fractional porous medium equation,

@ 0 < m < 1: fractional fast diffusion equation.

Change of variable: g:=1/m+1, v=u™ = 9:(vi 1)+ (-A)2v =0.
Fractional nonlinear diffusion equation on a bounded domain
OvI L+ (=A)2v =0 inQx(0,+),
v=0 in(RY\ Q) x (0,400), (CDP)
v(-,0) =v in Q.

florian.salin@ec-lyon.fr Fractional Nonlinear Diffusion Equation 6/35



Large-time behaviour of fractional nonlinear diffusion equation Derivation of the equation

Purpose

[N]])

Ot(vi 1) 4+ (—A)2v =0.

e g € (1,2): fractional porous medium equation,

@ g € (2,400): fractional fast diffusion equation.

Purpose:
@ Energy decay estimates,
o Fast diffusion case: Near extinction asymptotics,

@ Numerical scheme preserving energy decay estimates.
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Large-time behaviour of fractional nonlinear diffusion equation

Decay estimates

Energy decay estimates: porous medium case

Proposition ([Bonforte, Vazquez|, [Akagi, S.])

Assume q € (1,2). Let v be an energy solution of (CDP).
There exist ¢, C > 0 such that, for any t > 0,

1

1
011g—2 q—2 0 q—2
(V010 + <) ™ < IOy < (V011 fay + CE) "7
4
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Large-time behaviour of fractional nonlinear diffusion equation Decay estimates

Energy decay estimates: fast diffusion case

Proposition ([Bonforte, Ibarrondo, Ispizua], [Akagi, S.])

Assume q € (2,2}]. Let v be an energy solution of (CDP).
There exist ¢, C > 0 such that, for any t > 0,

1 1
-2 —2 -2
(HVOHZG(Q) Ct>+ < V(o) < (HVOHZq(Q) a Ct><qk .

. . . Vel
In particular, u extincts at a time t, < T, := %Rd)

Moreover, for any t > 0,

1 1
c(te = 1)1 < [Iv(t)ll o) < C(t — )17,
and the same is true when || - || q(q) is replaced by || - HH%(Rd)’
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Large-time behaviour of fractional nonlinear diffusion equation Decay estimates

|dea of proof

Lemma (Fractional Sobolev inequality)

Let 2%, := g 2d)+, and q € (1,2}]. There exists K > 0 such that,

lullioqrey < Klulyg (goy = K\/ (8)200)

for any u € H2 (RY) with u =0 in R\ Q.

@ Obtain energy identity from the variational form of the equation,

@ Use the fractional Sobolev inequality, or monotonicity of Rayleigh
quotient, to obtain an ordinary differential inequality,

© Integrate the ordinary differential inequality.
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Large-time behaviour of fractional nonlinear diffusion equation Convergence to asymptotic profiles with energy method

Assume 2 < g < 2;,. Then

1 1

(te =177 < MOl 3 oy < €6 — 0)]

—1 ty
Rescaled solution: w(s) := (t, — t)q—12 v(t), s:=log <t t> .
L —
-1
= qu_l, and ¢ < ||w(s)
qg—2

<C

S

Then 0wt 4 ()3 I8 s

Does w(s) converges as s — 0o 7

Non-fractional case:
@ Berryman, Holland ('80): convergence along subsequences,
@ Feireisl, Simondon ('00): convergence along the full sequence,
e Bonforte, Grillo, Vdzquez ('12): convergence in relative error,
e Bonforte, Figalli ('20), Jin, Xiong ('23), Akagi ('23), Choi, McCann,
Seis ('23): Sharp rate of convergence.
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Large-time behaviour of fractional nonlinear diffusion equation Convergence to asymptotic profiles with energy method

Rescaled solution and asymptotic profiles

o -1
o4 (8w = T Lt and ¢ < )]

q—2 H%(Rd)<C.

Proposition ([Akagi, S.])
For any s, — +o0, there exists a subsequence (still denoted by (s,)), and
¢ € H2(RY)\ {0}, with ¢ = 0 in RY\ Q, such that
w(s,) = ¢ strongly in H2 (R9),
(—A)2¢ = Xg¢? 1 inQ,

with \g := 4= > 0.
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Large-time behaviour of fractional nonlinear diffusion equation Convergence to asymptotic profiles with energy method

Generalized gradient flow structure for nonlinear diffusion

Define
Xs(Q):={ue HZ(RY): u=0ae inR'\Q},
1 A
J(w) = 5””’”34%(]1@) - F"kugq(m for w € Xp(Q).

Then the rescaled solution s > 0 — w(s) € Xp(Q2) solves
dsw971(s) = =S (w(s)), fora.e. s>0.

Therefore it holds

4 2 d
- (g—2)/2 el <
o Has(yw\ W)(6)|| yigy + s /W) <O, Forae s>0,

and J(w(+)) is non-increasing.
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Large-time behaviour of fractional nonlinear diffusion equation Convergence to asymptotic profiles with energy method

Lojasiewicz inequality

Theorem ([tojasiewicz])

Let U C RY open and f : U — R a real-analytic function. Let xq € U such

that Vf(xp) = 0. Then there exists a neighborhood V of xp, w > 0 and
0 € (0,1/2] such that

1£(x) — F(x0)* 7 <w|VF(x)], xe V.

Proof for d = 1: IN > 2 s.t. f(M)(x) # 0 and
F(N)
F(xo + h) — f(x0) = N(|X°) Y+ o(hM),
FM(x0)

/ N-1 N-1

Flo 1) = G "™+ oh )
N 1 ’ N—1
:>(f(X0+h)7f(Xo))N —Wf(x()+h)+o(h )
S/ (xo+h)

florian.salin@ec-lyon.fr Fractional Nonlinear Diffusion Equation

14 /35




Convergence to asymptotic profiles with energy method
Lojasiewicz inequality implies full convergence of gradient
flows

Lemma ([tojasiewicz])
Let x € AC),c(0, 00; RY) be a solution to x(t) = —Vf(x(t)) for a.e. t > 0.

Assume 3 (tp)n S.t. t, /00 and x(tp) — Xoo With Vf(xs) = 0.
Then x(t) — Xoo as t — +o0.

Sketch of proof:

SR ~ Fx)) = ~TAIKD] < —(F(x(1)) — Fxe))*I(0)
= K(0)] < - S (F() — F))’

= /OOO X(BldE < L (F(x(0)) ~ Fx))’ < 00
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Large-time behaviour of fractional nonlinear diffusion equation Convergence to asymptotic profiles with energy method

PDE case: tojasiewicz-Simon inequality

Simon ('83) extended tojasiewicz inequality to certain analytic functionals.
Applicable to semilinear parabolic equation with analytic nonlinearities.

Feiresl and Simondon ('00) extended tojasiewicz-Simon inequality to the
standard Laplacian and non-analytic nonlinearities.

Akagi, Schimperna, Segatti ('19) extended tojasiewicz-Simon inequality to
the fractional Laplacian and to non-analytic nonlinearities.
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Large-time behaviour of fractional nonlinear diffusion equation Convergence to asymptotic profiles with energy method

Lojasiewicz-Simon inequality for fractional Laplacian

I(w) = %kuz%(w // s)dsdx for w € H2(RY), g(w(-)) € L}(Q).

(H0) g € C}(R) and g(0) =0,
(H1) g € C*((0,0)), and for all ﬁ € (0,00), there exist C, M > 0 such that,

g (s)] < C Vs € (0,6), neN

!
|s |
(H2) there exists 0 < p < oo with p < 2% — 1 such that

lg’(s)] < C(|s|P"* +1) forall seR.

Lemma ([Akagi, Schimperna, Segatti])

Assume (HO), (H1), (H2), and let ¢» € H% (RY) N L>(R) such that I'(v)) = 0 and
¥ > 0. Then, there exists 6 € (0,1/2] and w,é > 0 s.t.

|I(W) - I(w)ll_e < w”I/(W)HH—%(Q)v ’fHW - ¢||H%(Rd) <.
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Large-time behaviour of fractional nonlinear diffusion equation Convergence to asymptotic profiles with energy method

Full convergence to the asymptotic profile

Proposition ([Akagi, S.])

Let 2 < q < 2}, Assume that ¢ > 0 and w(s,) — ¢ strongly in H%(Rd)
for some sequence of times (sp)nen such that s, — +o0o. Then

w(s) — ¢ strongly in H2 (R?) as s — +oc.

Idea of proof: Use the tojasiewicz-Simon inequality with the functionnal

A
J(w) = H ||H2(Rd ;qHWHZq(Q)-

Open problems:
@ Estimation of the extinction time,

@ Rate of convergence to the asymptotic profile.
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Numerical analysis of fractional nonlinear diffusion equation

© Numerical analysis of fractional nonlinear diffusion equation
@ Discretization of the equation
@ Analysis of the numerical scheme
@ Numerical illustrations of the large-time behaviour
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Numerical analysis of fractional nonlinear diffusion equation Discretization of the equation

Notation

We restrict to dimension d = 1.
e Q= (—L,L), space step h=L/(Ny + 1):

—L 0 h L
L1 | | | | 0 | [
— 1 T 1 1 T 1 1 1
X—Ny—2  X—Ny--- X2 X-1 Xp X1 X2 --- XN, XNy +2

@ time step At > 0.

For u a fonction over [0, +00) X R,

ul' := u(nAt, ih),

1

10y o= Dl h.

i€Z
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Numerical analysis of fractional nonlinear diffusion equation Discretization of the equation

Discretization of the fractional Laplacian

g uj — u(y) uj — u(y)
(—A)% u(x;) = Caa| PV. / MiZ oY) g Uiz o) g,
' “ x—yl<h [Xi =yl x—y|>h X =yt
singular part tail part

@ singular part: u(y) replaced by Taylor expansion,
e tail part: u(y) replaced by piecewise quadratic interpolation.
Then integrating explicitly yields, for some weights (’th)jeZ,

(— A)2ux, Z’YJ — uj_j).
JEZ

Convergence result: For u € C*, the error is in O(h3~9).

> Y. Huang and A. Oberman. “Numerical Methods for the Fractional
Laplacian: A Finite Difference-Quadrature Approach”. In: (2014)
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Numerical analysis of fractional nonlinear diffusion equation Discretization of the equation

Convolution structure of the discrete fractional Laplacian

[( ﬁ Z i (ui = uj—j)
JEZ
I
(~2)Fulx) = PV. | Tk (ulx) — ul; — 2))d.

Theorem ([Ayi, Herda, Hivert, Tristani, 2022])

There exists positive constants b, and B, independent of h such that

o h o
|jh|1+ah S s |jh|1+ah

florian.salin@ec-lyon.fr Fractional Nonlinear Diffusion Equation 22/35



Numerical analysis of fractional nonlinear diffusion equation Discretization of the equation

Convolution structure of the discrete fractional Laplacian

For u a Schwartz function,

Z [(_A)/?”L up = % Z h71h|u,- — uj—jf* ~ [U]Hz (R)’

i€Z IE€EZ,JEZ

::[Ulz a
H,2 (R)

Lemma ([Hivert, S.], Discrete fractional Sobolev inequality)
For q < 27, there exists K > 0 independent of h,

Julgeey < KLl 5,

for u € ZN with u = 0 outside .
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Numerical analysis of fractional nonlinear diffusion equation Discretization of the equation

Numerical scheme for fractional nonlinear diffusion

equation

Implicit scheme for CDP:

n+1lyg—1 _ (,.n\g—1 a
(U, ) (U,) + [(_A)ﬁ un+1} = 0, M < Ny and n >0,

At
uf =0,

|i| > Nx+1and n>0,

W = (&) il < N

Does the scheme has the same property as the continuous equation (decay

rate, extinction) ?

24 /35
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Numerical analysis of fractional nonlinear diffusion equation Analysis of the numerical scheme

Discrete decay estimates: porous medium case

Proposition ([Hivert, S.])
Assume q € (1,2). There exists (5t)n>0, independent of h, such that

HUnH/"(R (HUOH,q(R + CnAt) = q + 6 for any n > 0.

Moreover,

supﬁnAt — 0, asAt—0.
n>0
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Numerical analysis of fractional nonlinear diffusion equation Analysis of the numerical scheme

Numerical results: energy decay for PME

Figure: Energy decay for ¢ = 1.5, = 0.5, h = 0.04, At = 0.03, L = 5.

1.5 :

l[u"llq
\ =7 (1Ol + et

\ === (|t + Ctn)l/(q”) + Bt

)1/(61*2)
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Numerical analysis of fractional nonlinear diffusion equation Analysis of the numerical scheme

Discrete decay estimates: fast diffusion case

Proposition ([Hivert, S.])
Assume q € (2,2}].
o Decay estimate: There exists (8~t),>0, independent of h, such that

1
”Un”/,f’(R) < (||u0|],q ®) CnAt) 4+ BAt forany n > 0.

Moreover,

sup B,,At — 0, asAt—0.
n>0

@ Extinction estimate:

T, n/2
Iy < 10lggey () foramyno.
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Numerical analysis of fractional nonlinear diffusion equation Analysis of the numerical scheme

Numerical results: energy decay for FDE

Figure: Energy decay for g = 2.4, = 0.5, h = 0.04, At = 0.03, L = 5.

1.2 -
lu"llq
--- - 1/(q-2)
AN (11572 = ctn) :
\ _ 1 -2
| T (1Pl - o) e
0.8 - -
0.6 [ —
0.4 —
0.2 [~ —
0 | |
0 6 8 10

th
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Numerical analysis of fractional nonlinear diffusion equation Analysis of the numerical scheme

Numerical results: energy decay for FDE

Figure: Energy decay for g = 3.5, = 1.5, h = 0.04, At =0.03, L =5.

1.2 :

lu"]lq
--- -2
(162157 ~ cta)

T (10 - o)

1/(g-2)
/(g2

+

)JrﬁAt

0.8

0.6 [ '

0.2 -

th
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Numerical analysis of fractional nonlinear diffusion equation Analysis of the numerical scheme

|dea of proof

© Obtain energy inequality,

110 ey = o

q’ At

an
Iy (R)

a
2

+ a2
(R)

>

@ Use discrete fractional Sobolev inequality to obtain a discretization of
the ordinary differential inequality,

+119 n||4q
1 ”un qu(]R) - ||U qu(]R) 5
- +1(2
o h " s+ K" H/g(R) <0.

© Sum in time and use convexity inequalities.
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Numerical analysis of fractional nonlinear diffusion equation Numerical illustrations of the large-time behaviour

Computation of the extinction time when g > 2

u : solution to the continuous problem with initial data u°
t.(u®): extinction time of u

Let £> 0 and w(s) := (E — t)a2u(t), s := log (£/(F — t)). Then

a -1
e w4 (-A)2w bwq_l, w(0) = ta-2u(0),

o |[w(s)|lqg — o0 as s — oo if > t.(u°),

e w extinct in finite time if ¥ < t,(u°).
To compute t.(u®) we proceed by dichotomy using the scheme

ot - o)

wd =1 —1/( )(u ).

1

(w19 = (wp)?

i n+1yq— 1
As (w™7)
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Numerical analysis of fractional nonlinear diffusion equation Numerical illustrations of the large-time behaviour

Figure: ¢ = 2.4, =0.5,h =0.04,At =0.03, L=5
t. computed by dichotomy with As = 0.001

i}
’ ——0.13279A 5092667
1 |
077 ]
0.5 - B i |
t, = 5.56 i
« = b.
0 | ’/\ | 1073 M| T
0 2 4 6 8 10 10-2 10-1
tn AS

(a) Energy decay of the non-rescaled (b) Convergence of the computation of the
solution extinction time as As — 0
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Numerical analysis of fractional nonlinear diffusion equation Numerical illustrations of the large-time behaviour

Figure: w(t) for « =0.5, ¢ =2.4 < 2%, h=0.01, As =0.01
t. computed by dichotomy with As = 0.01
w°: theoretical asymptotic profile
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Numerical analysis of fractional nonlinear diffusion equation Numerical illustrations of the large-time behaviour

Figure: g =2.4 <2}, h=0.01, As =0.01
t. computed by dichotomy with As = 0.01
w: theoretical asymptotic profile

100

T T
log([[w"” — weo|lq)
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Conclusion

Summary

We showed convergence to asymptotic profiles in fast diffusion case.
We introduced a numerical scheme having same decay energy as the

fractional nonlinear diffusion equation, and a method for the computation
of the extinction time.

Extensions:
@ Rates of convergence to asymptotic profiles,
@ Numerical analysis in dimension d > 1,

@ Better convergence results for the numerical scheme.

Thank you for your attention!
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